Lesson Plan

Name of the Faculty :		Dr. Umesh Gupta		
Discipline	:	Electronics & Communication		
Semester	:	4 th		
Subject	:	Analog Circuit (PCC-ECE206G)		
Lesson Plan Duration:		15 weeks (from January, 2020 to April, 2020)		

	Theory		Practical		
Week	Lecture	Topic (including assignment / test)	Practical	Торіс	
	Day		Day		
1 st	1st	Introduction to BJT & FET	~		
	2nd	Biasing Scheme for BJT & FET		To study Bridge	
		Amplifier.	1 st	Rectifier with or without	
	3rd	Working and various features of	13	filter	
		various types of Biasing			
		Configuration(CE/CS,CB/CG,CC/CD)			
2nd	1st	Q-Point, Bias Stability, Related		To design a simple	
		Numerical.		common emitter(CE)	
	2nd	Amplifier Model: Transconductance	2.	amplifier circuit using	
		Amplifier, Transresistance Amplifier,	Znd	BJT and find its gain	
		Voltage Amplifier, Current Amplifier.		and frequency response.	
	3rd	Small Signal Analysis of Both BJT &			
0.1					
3rd	1 st	Low Frequency Transistor Model and		To design a Differential	
		resistance voltage gain		Amplifier using BJ1 and	
		Lew Freewer ev A relucie of	2 nd		
	2nd	Low Frequency Analysis of Multistage Amplifier	510	frequency response.	
	2 .	Design Procedure of Particular			
	3rd	Specification			
44	1	High Frequency Transistor Model		To design BC coupled	
4th	150	Then requerey Transistor Woder		single stage BJT	
	2nd	Frequency Response of Single stage and		amplifier and	
	_	Multistage Amplifier	⊿ th	determination of the	
			+	gain, frequency	
	3rd	Frequency Response of Cascode		response, input and	
		Amplifier		output impedance	
_		Working Operation of Class A newson		To design a DIT Emitter	
5 th] st	Amplifier and calculation of their		Follower and	
		Power efficiency		determination of the	
	$\gamma_{\rm nd}$	Working Operation of Class R power	5 _{th}	gain input and output	
	∠na	Amplifier and calculate efficiency	5	impedance	
	3rd	Working Operation of Class C D &	1	mpounico.	
	JIU	AB Power Amplifier.			

6 th	1st	Feedback Topology: Voltage Series, Voltage Shunt, Current Series, Current Shunt.		To design and test the performance of BJT-RC Phase shift Oscillator.
	2nd	Effect of Negative Feedback on Gain, Bandwidth, Noise, Impedance.	6 th	
	3rd	Concept of Stability,Gain Margin and Phase Margin.		
7th	1st	Basic Concept of Oscillator, Barkhausen Criterion of Oscillation.		Internal Viva-1
	2nd	Working Principle of RC Phase shift Oscillator, Calculation of their Freq.	7th	
	3rd	Working Principle of Wein Bridge Oscillator, Calculation of their Freq.		
8th	1 st	Working Principle of Hartley Oscillator, Calculation of their Freq.		To design and test the performance of BJT- Hartley Oscillator.
	2nd	Working Principle of Colpitts Oscillator, Calculation of their Freq.	8 th	
	3rd	Working Principle of Clapp Oscillator, Calculation of their Freq.		
9th	1st	Working of 555 Timer as Astable configuration		To design and test the performance of BJT – Colpitt Oscillator
	2nd	Working of 555 Timer as Monostable configuration	9th	
	3rd	Class Test		
10 th	1st	Basic Concept of Operational Amplifier.		To design an Astable Multivibrator using 555 timer
	2nd	Ideal vs Practical OpAmp.	10th	
	3rd	Block Diagram of OPAMP.		
11th	1 st	Design Specification of Balance Input Balance Output.		To design a monostable multivibrator using 555 timer
	2nd	Design Specification of Balance Input UnBalance Output.	11 th	
	3rd	Design Specification of UnBalance Input Balance Output.		
12th	1st	Design Specification of UnBalance Input UnBalance Output.		To design Schmitt trigger using Op-Amp and verify its operational characteristics.
	2nd	Calculation of Common Mode Gain, Differential Gain, CMRR, ICMR of each Topology.	12 th	
	3rd	Working of Schmitt Trigger and their Application.		

13 th	1st	Design of Current Mirror and its Variant.		To design and test the performance of BJT-
	2 nd	V-I Characteristics of OPAMP.	13 th	Wein Bridge Oscillator.
	3rd	Calculation of Output resistance and Minimum Sustainable Voltage.		
14^{th}	1 st	Maximum Usable Load.		OP-AMP as Inverting,Non
	2nd	Numerical Related to Biasing	14 th	Inverting,Integrator and differentiator.
	3rd	Numerical Related Power Amplifer.		
15th	1 st	Revision of Important topics Unit 1		Internal Viva-2
	2^{nd}	Revision of Important topics Unit 2	15th	
	3rd	Revision of Important topics Unit 3		